Delta and jackknife estimators with low bias for functions of binomial and multinomial parameters

نویسندگان

  • Christopher S. Withers
  • Saralees Nadarajah
چکیده

An estimator is said to be of order s > 0 if its bias has magnitude n−s, where n is the sample size. We give delta estimators and jackknife estimators of order four for smooth functions of the parameters of a multinomial distribution. An unbiased estimator is given for its density function. We also give a jackknife estimator of any order for smooth functions of the binomial parameter. The jackknife estimator of order s has a simpler form than the delta estimator of order s. On the other hand, the jackknife estimator, like the bootstrap, requires ∼ ns−1 calculations while the delta estimator of order s requires only ∼ n calculations. Examples include the log odds ratio, the survival function and the Shannon information or entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias Correction with Jackknife, Bootstrap, and Taylor Series

We analyze the bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating f(p), where f ∈ C[0, 1] is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in deleted jackknife, different values o...

متن کامل

Empirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations

The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...

متن کامل

Estimation of Binomial Parameters when Both n , p are Unknown

We revisit the classic problem of estimation of the binomial parameters when both parameters n, p are unknown. We start with a series of results that illustrate the fundamental difficulties in the problem. Specifically, we establish lack of unbiased estimates for essentially any functions of just n or just p. We also quantify just how badly biased the sample maximum is as an estimator of n. The...

متن کامل

Statistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal

This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...

متن کامل

On Bivariate Generalized Exponential-Power Series Class of Distributions

In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2013